Targeted Exon Sequencing Successfully Discovers Rare Causative Genes and Clarifies the Molecular Epidemiology of Japanese Deafness Patients

نویسندگان

  • Maiko Miyagawa
  • Takehiko Naito
  • Shin-ya Nishio
  • Naoyuki Kamatani
  • Shin-ichi Usami
چکیده

Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30-40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massively Parallel DNA Sequencing Successfully Identifies New Causative Mutations in Deafness Genes in Patients with Cochlear Implantation and EAS

Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatmen...

متن کامل

A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology

OBJECTIVE Cochlear implantation is the most important treatment currently available for profound sensorineural hearing loss. The aim of this study was to investigate the etiology of hearing loss in patients with cochlear implantation, and to compare outcomes. METHODS Japanese hearing loss patients who received cochlear implants (CIs) or electric acoustic stimulation (EAS) in Shinshu Universit...

متن کامل

Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study

BACKGROUND Genetic tests for hereditary hearing loss inform clinical management of patients and can provide the first step in the development of therapeutics. However, comprehensive genetic tests for deafness genes by Sanger sequencing is extremely expensive and time-consuming. Next-generation sequencing (NGS) technology is advantageous for genetic diagnosis of heterogeneous diseases that invol...

متن کامل

Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing

BACKGROUND Although over 60 non-syndromic deafness genes have been identified to date, the etiologic contribution of most deafness genes remained elusive. In this study, we addressed this issue by targeted next-generation sequencing of a large cohort of non-syndromic deaf probands. METHODS Probands with mutations in commonly screened deafness genes GJB2, SLC26A4 and MT-RNR1 were pre-excluded ...

متن کامل

Whole-Exome Sequencing Efficiently Detects Rare Mutations in Autosomal Recessive Nonsyndromic Hearing Loss

Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013